Tag Archives: Arduino

Arduino Tutorial 1: Getting Started with the Arduino for Beginners

Arduino

Guys, our original series on the Arduino Microcontroller was insanely popular. Those original lessons had some great technical content, but the production quality of the videos was pretty low. Because of that, I want to go in and redo the arduino tutorials, taking advantage of improved production capabilities I now have, and using fresh hardware and software. For those who have taken the original series, the first few lessons will be material you already have learned. You can choose to review the material, or just skip to the later lessons.  In this new series of lessons, I will be using this Arduino kit. 

So, enough of this small talk, lets get right into the new and improved lessons.

With the hardware linked to above, you will simply have to install the Arduino software. You can download the Arduino Software here. The installation is explained step-by-step in the above video, but it is pretty self explanatory.

The video takes you through the steps to make the on-board LED turn on, off, or blink. This will be your first few example programs, and hopefully you will see that programming is not that difficult. When you are done with this lesson, you will have written your first few programs. Enjoy!

LESSON 33: Understanding Local and Global Variables in Arduino

In lesson 32 we introduced you to the concept of Arduino Functions. Functions are little blocks of code that allow you to break a complicated task down into small logical chunks of code. All the parts of the program shared the same set of variables.  This is the easiest way to do functions, but is really not a good way of doing it. As programs get more complicated, with more functions, unexpected problems can arise if all the parts of the program are sharing the same variables. One function might inadvertently change a variable in use by another function causing unexpected problems. The best way to write modular code is to use local variables.

In Arduino, if a variable is declared at the top of the program, before the void setup, all parts of the program can use that variable. Hence, it is called a Global variable. On the other hand, if the variable is declared between a set of curly brackets, the variable is only recognized within that scope . . . that is, it will only be recognized and can only be used between that set of curly brackets.

For example, if a variable is declared in the void setup, it will not be recognized and can not be used in the void loop, because the void loop is within its own set of curly brackets.

Similarly, if there are two for loops inside the void loop, each for loop has its own set of curly brackets. If a variable is declared inside the first for loop, it will not be recognized inside the other for loop, and will not be recognized in the other parts of the void loop.

This might sound like a hassle, but using local variables really helps you stay out of trouble. The best way to do functions is to use local variable, and inside each function, the variables are declared that are needed by that function. Watch the video and I will give you clear examples of using local and global variables.

 

LESSON 32: Understanding Arduino Functions

So far we have written programs as a long string of code, pretty much all in the void loop. As we begin to need to develop more complicated code, putting all the programming in the void loop can become unmanageable. It is easy to lose track of what we are doing. For more complicated programs, we want to break the problem up into manageable chunks of code. This is called modular program. We develop small modules that do specific tasks, and then our void loop simply calls these modules. The modules are called “Functions” in arduino.

Lets consider an example. Lets say we want to write an arduino program that prompts the user for the number of grades he has. Then it averages the grades, prints the grades and then prints the average. The following program would do this job, with all the code in the void loop:

You can see that the void loop is getting pretty complicated, and it would be easy to begin to lose track of what is going on. If we think about what we are trying to do, lets try to break it down more logically. These are the logical tasks we need to do:

Input Grades

Average Grades

Print Grades and Average

I think that is the logical way to break the program down. Hence, we need three modules or functions, which we could define as follows:

inputGrades();

avGrades();

printGrades();

We could call these three functions in the void loop. then down below the void loop we would need to define, or teach arduino what each of these functions do. In effect, the code in the example above is put down in three logical blocks, which we call functions. Notice that when we do that, the functions must be defined AFTER the void loop. That means it is done after the closing curly bracket for the void loop. Using functions, we can rewrite the program above as follows:

Notice now that the void loop is very simple to understand, since each function is logically named. Also, if we look down at the function definition, it is clear what each chunk of code does. In this example, we are using global variables, so each function, and the void loop are all working with the same set of variables. In future lessons we will look at the use of local variables, and then how that would affect the structure of our functions.

LESSON 29: The Dos and Don’ts of Arduino Software Interrupts

This is a follow on to lesson 28, to address some of the questions that come up. It is important to understand that all functions are not well suited for use with software interrupts. You must be mindful of timing. Key to being successful with Arduino Software Interrupts is the function called needs to be small and very fast. When the interrupt calls the function, you need to get in and out of that function as quick as you can. Hence, you should avoid doing printing in the function called by the interrupt. You should try and avoid working with serial data, because things can get lost if you are not careful. Also, you should know that you can not use a delay in the function.

For most beginner programmers, interrupts should just be used to call short functions, with minimal lines of code, that can be run quickly.

Comparing the Arduino, Raspberry Pi Model 2, and Beaglebone Black

In this video we do a head to head comparison of the Arduino, Raspberry Pi Model 2, and the Beaglebone black. We compare the pros and cons of each platform and discuss how to decide which platform to learn on and which is best for different types of projects.

You can pick up the gear discussed in this video below:

Arduino: This is a great place to start, and the device is very affordable.

Sparkfun Inventor Kit: Everything you need to learn microcontroller programming and circuits. This is the kit we use in our Arduino Lessons, and even includes the Arduino.

Raspberry Pi Kit: This kit has everything you need to follow along on our Raspberry Pi Lessons.

Raspberry Pi: If you already have the cords and cables, you can buy just the Raspberry Pi.

Beaglebone Black: We are not working on a series of lessons showing you how to use the Beaglebone Black. Now would be a good time to go ahead and order your Beagle.

I hope you enjoyed this video lesson, and hope you will jump in and take our lessons on using the Arduino, Raspberry Pi, and the Beaglebone Black